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We present a new numerical method for studying the dynamics of quantum fluids
composed of a Bose–Einstein condensate and a cloud of bosonic or fermionic atoms
in a mean-field approximation. The method combines an explicit time-marching
algorithm, previously developed for Bose–Einstein condensates in a harmonic or
optical-lattice potential, with a particle-in-cell approach to the equation of motion
for the one-body Wigner distribution function in the cold-atom cloud. The method is
tested against known analytical results on the free expansion of a fermion cloud from
a cylindrical harmonic trap and is validated by examining how the expansion of the
fermionic cloud is affected by the simultaneous expansion of a condensate. We then
present original calculations on a condensate and a thermal cloud inside a harmonic
well and a superposed optical lattice, by addressing the free expansion of the two
components and their oscillations under an applied harmonic force. These results are
discussed in the light of relevant theories and experiments. c© 2002 Elsevier Science (USA)
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I. INTRODUCTION

The physics of ultracold atomic vapors under magnetic or optical confinement has been
a continuing and ever expanding focus of interest since the realization of Bose–Einstein
condensation [1]. Following characterizations of the basic thermodynamic and dynamical
properties of condensates [2], a number of experiments have been performed to investigate
their phase coherence and superfluidity [3], to study nonlinear effects and special spectro-
scopic features [4], and to observe vortices [5]. Parallel efforts are being made in the study
of gases of fermionic atoms [6] and of boson–fermion mixtures [7], with the ultimate aim
of realizing novel superfluids.
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Theoretical studies of the dynamics of these systems, involving the analytical solution of
approximate models, have very often been successful in explaining or predicting such novel
phenomena. However, the interplay of different species and the thermal fluctuations of a
condensate are not easily handled by analytical methods. The validity of the approximations
may be limited to the extreme collisionless or hydrodynamic regimes, with the confinement
of the sample being treated within a local-density approach. Thus, while the equations
governing these dilute systems remain simple, their numerical solution can be helpful for
investigating more complex dynamical problems where an intermediate regime is met or a
cold-atom cloud accompanies the condensate.

The atomic interactions in a highly dilute Bose gas at very low temperatures, relevant
for current experiments, are described by a contact pseudopotential accounting for s-wave
scattering in binary atom–atom elastic collisions. A condensate is then treated within a mean-
field approach by solving the stationary or the time-dependent Gross–Pitaevskii equation
(GPE). Several types of numerical approaches have been developed: eigenvalue solvers
[8], variational solvers [9], or explicit solvers [10] for the ground state and implicit [11] or
explicit [12] time-marching schemes for the dynamics.

Methods for studying the dynamics of an isolated cloud of ultracold (bosonic or fermionic)
atoms are also well developed. One needs to solve the Vlasov–Landau equation of motion
(VLE) for the Wigner distribution function. Various numerical techniques have been used
for this purpose; these are based either on an ergodic assumption [13] or on the inclusion of
statistical noise [14], or else they use direct simulation Monte Carlo (DSMC) and related
particle-dynamics approaches [15–17].

The general theoretical background is provided by the book of Kadanoff and Baym
[18]. These authors developed a Green’s function approach to transport phenomena, which
extends the Boltzmann equation to strongly interacting quantum fluids and allows for pro-
gressively improved self-consistent approximations. This formalism was extended to a ho-
mogeneous Bose-condensed gas at finite temperature by Kane and Kadanoff [19], within a
Beliaev approximation including interactions up to second order. More recently, these meth-
ods have been adapted to the theory of transport phenomena in a confined Bose gas within
the Hartree–Fock–Bogoliubov approximation [20, 22, 23], dealing with a Bose–Einstein
condensate accompanied by its thermal cloud. Jackson and Adams [24] have proposed to
combine the GPE with a quantum version of the DSMC to numerically evaluate the dy-
namics of such a fluid. Numerical studies based on a generalized GPE combined with a
semiclassical kinetic equation, and including collisions between the condensate and the
thermal cloud, are also becoming available for dynamical properties of a trapped Bose-
condensed gas at finite temperature [25].

In the present work we proceed along the path traced by Jackson and Adams [24]. We
propose a different approach to the solution of the GPE and a different method for preparing
the initial equilibrium state, which would be immediately applicable to a multicomponent
cold-atom cloud. The method is applied to two classes of dynamical problems: The first
concerns the ballistic expansion of a fermion cloud and the role played by the presence of
a condensate, while the second concerns a Bose-condensed gas in a periodic optical-lattice
potential at finite temperature.

After introducing in Section II the model for both the equilibrium state and the dynamical
evolution of the fluid, we describe in Section III the numerical methods that we have used
to consistently solve the GPE for the condensate and the VLE for the Wigner distribution
function of the cloud. The procedure followed in the actual computations is also outlined
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in Section III, with due emphasis on the preparation of the initial equilibrium state. The
physical applications that we have carried out are presented and discussed in Section IV.
A discussion of computational aspects in Section V and some final remarks in Section VI
conclude the paper.

II. THE MODEL: A REVIEW OF THE MAIN CONCEPTS

A. Transport in a Normal Quantum Fluid

In the original formulation by Kadanoff and Baym (KB), the problem of transport in
a quantum fluid in the normal state is tackled by deriving an analogue of the Boltzmann
equation for the Wigner distribution function f (p, r, t) from the microscopic equations
of motion for the nonequilibrium density matrix ρ(r1, t1; r1′ t1′) ≡ 〈ψ†

U (r1, t1)ψU (r1′ , t1′)〉,
which is defined through the particle creation and destruction operators ψ

(†)
U in the presence

of an external, slowly varying disturbance U(r, t). Namely,

f (p, r, t) =
∫

dx exp(−ip · x)〈ψ†
U (r + x/2, 0)ψU (r − x/2, t)〉, (1)

where we have set h̄ = 1 and r = (r1 + r1′)/2 and x = r1 − r1′ are the center of mass and
the relative coordinate of the two particles. The moments of the Wigner function yield
observables such as the particle density n(r, t) = (2π)−3

∫
dp f (p, r, t) and the current

density j(r, t) = (2π)−3
∫

dp(p/m) f (p, r, t).
Contact with the Boltzmann transport equation is made by performing gradient expan-

sions. As in the conventional Boltzmann-equation approach, the validity of the KB formu-
lation is limited to slowly varying perturbations. On the other hand, the advantage of the
KB formulation is that higher order correlations enter the equation of motion for the density
matrix in an explicit manner, and therefore systematically improved approximations which
are consistent with the conservation laws are accessible. Examples of such treatments of the
correlation term are the Hartree–Fock approximation and the Born-collision approximation.
In the former case the collisionless Boltzmann equation is recovered, while in the latter the
collisional Boltzmann equation is extended to nondilute systems by including the effect of
the external potential on the motion of the particles between collisions.

B. Extension to Coupled Condensate–Noncondensate Dynamics

The extension of the KB treatment to gases including a Bose-condensed component has
been made by Kane and Kadanoff [19] and further developed by Griffin and co-workers
[20, 22] and also by Wachter et al. [23] through a different derivation. The presence of
two components and the appearence of off-diagonal elements in the density matrix (the so-
called anomalous densities) below the Bose–Einstein condensation temperature requires the
introduction of three Wigner distribution functions: fc(p, r, t) for the condensate component
described by 〈ψ(†)

U 〉 and involving |〈ψ†
U 〉|2, fb(p, r, t) for the noncondensate described by

the fluctuations operators ψ̃
(†)
U ≡ ψ

(†)
U − 〈ψ(†)

U 〉, and involving 〈ψ̃†
U ψ̃U 〉, and fm(p, r, t) for

the anomalous part involving 〈ψ̃U ψ̃U 〉 and its Hermitean conjugate.
We thus have to deal with the density of condensate nc(r, t) = (2π)−3

∫
dp fc(p, r, t),

the density of noncondensate nb(r, t) = (2π)−3
∫

dp fb(p, r, t), and the anomalous density
m(r, t) = (2π)−3

∫
dp fm(p, r, t). Analogous expressions hold for the current densities.
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As to the consistency of the approximations with the conservation laws, the same general
remarks as for normal systems apply. However, the appearence of the condensate introduces
an additional principle of gauge invariance, leading to the requirement that the excitation
spectrum be gapless [26]. It is well known [20, 26] that approximations capable of simul-
taneously accommodating the conservation laws and the gaplessness condition are hardly
available, so that a choice has to be made depending on the specific conditions of density
and temperature of the system.

In the regime that we address in the present work the anomalous densities can be neglected,
resulting in the gapless Hartree approximation [20, 23]. Thus, the equation of motion for
the condensate wavefunction 	(r, t) ≡ 〈ψ†

U (r, t)〉 is [21]

ih̄
∂	(r, t)

∂t
=

[
− h̄2

2m
∇2 + V eff

c,b(r, t)

]
	(r, t) (2)

and is coupled to the collisionless Vlasov equation for the noncondensate Wigner function
fb(p, r, t),

∂ fb(p, r, t)

∂t
+ p

m
· ∇r fb(p, r, t) − ∇rV eff

b (r, t) · ∇p fb(p, r, t) = 0. (3)

The mean-field potentials in Eqs. (2) and (3) are

V eff
c,b(r, t) = V ext

b (r) + U(r, t) + Ug[nc(r, t) + 2nb(r, t)] (4)

and

V eff
b (r, t) = V eff

b (r) + U(r, t) + 2Ug[nc(r, t) + nb(r, t)], (5)

including the time-dependent driving potential U(r, t) and an axially symmetric confining
potential given for a harmonic trap by V eff

b (r) = mbω
2
b(r

2
⊥ + ε2

b z2)/2. In Eqs. (4) and (5),
nc(r, t) = |	(r, t)|2 and Ug = 4πh̄2abb/mb is the boson–boson interaction parameter in
terms of the s-wave scattering length abb and the boson mass mb.

Once the algorithm to solve Eqs. (2) and (3) is implemented, it is easily extended to a
mixture of condensed bosons and a fermionic cloud in the collisionless regime. In this case,
the effective mean-field potentials become

V eff
c,f (r, t) = V ext

b (r) + U(r, t) + Ugnc(r, t) + Ufnf(r, t) (6)

and

V eff
f (r, t) = V ext

f (r) + Uf(r, t) + Ufnc(r, t). (7)

Here, V ext
f (r) = mfω

2
f (r

2
⊥ + ε2

f z2)/2 andUf(r, t) are the external trapping and driving poten-
tials acting on the fermions and Uf = 2πh̄2abf/mr is the boson–fermion coupling constant
with abf the boson–fermion s-wave scattering length and mr = mbmf/(mb + mf), where mf

is the fermion atomic mass. Notice that fermion–fermion interactions in the s-wave channel
are effectively suppressed by the Pauli principle in a dilute gas of spin-polarized fermions,
as is relevant to current experiments on boson–fermion mixtures.
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C. Validity of the Model

To summarize, Eqs. (2) and (3) describe the coupled dynamics of a Bose–Einstein con-
densate and a bosonic or fermionic cold-atom cloud. In the former case the potentials V eff

c,b

and V eff
b are used, and in the latter these are replaced by V eff

c,f and V eff
f . The range of validity

of this approach is in principle limited to: (i) slowly varying space- and time-dependent
external potentials, which allow a low-order gradient expansion of the equations of mo-
tion for the one-body density matrix; (ii) a collisionless regime, which allows expansion
of the self-energies to first order in the strength of the atomic interactions; and (iii) not too
low a temperature, so that the anomalous averages can be neglected and the Hartree–Fock
spectrum is accurate.

We implement in the following a numerical method to solve Eqs. (2) and (3) and test it
against dynamical behaviors in a one-component fermionic cloud and in clouds of either
fermions or thermal bosons accompanied by a condensate. Of course, the role of the statistics
enters at this level only from the initial distribution of the particles in phase space. We thus
turn next to a discussion of the equations that we use to determine the initial conditions for
the subsequent time evolution.

D. Semiclassical Description of the Equilibrium State

Before proceeding to present the algorithm for our dynamical simulations we briefly
recall the basic steps that we take in preparing the initial state of the gas in thermodynamic
equilibrium and in evaluating the corresponding densities of the condensate and of the
fermionic or bosonic cloud. We refer the reader to Refs. [27, 28] for the details of the theory
and for a discussion of the excellent agreement that it yields with thermodynamic data on
Bose–Einstein condensed gases, under conditions of temperature and dilution that will be
verified in the calculations reported in Section IV.

The equilibrium condensate density is calculated within the Thomas–Fermi approxima-
tion, which amounts to neglecting the kinetic energy term in the GPE. Its validity is ensured
whenever the average mean-field energy Ugnc is much larger than the typical confining en-
ergy. In the case of harmonic confinement the condition Ncabb/aho � 1 is required, where
Nc is the number of atoms in the condensate, aho = (h̄/mbω̄b)

1/2 is the harmonic oscillator
length, and ω̄b = ωbε

1/3 is the geometric average of the trap frequencies. The equilibrium
density profile of the condensate is given by

nc(r) = 1

Ug

[
µb − V ext

b (r) − kb,fnb,f(r)
]
θ
(
µb − V ext

b (r) − kb,fnb,f(r)
)
, (8)

where kb = 2Ug, kf = Uf, and µb is the chemical potential for the bosons.
For the equilibrium cloud density of bosons or fermions we adopt the semiclassical

Hartree–Fock scheme [27]. This choice is justified as long as the gas is in a very dilute
regime, a condition which is usually met in current experiments. In this approximation we
have

nb,f(r) =
∫

dp
(2π)3

{
exp

[
1

kBT

(
p2

2mb,f
+ V eff

b,f (r) − µb,f

)]
∓ 1

}−1

, (9)

with V eff
b (r) and V eff

f (r) determined by the confining potentials supplemented by a static
mean-field interaction term as in Eqs. (5) or (7).



MIXED BOSE-CONDENSATE AND COLD-ATOM CLOUD DYNAMICS 373

The chemical potentials µb and µf are determined from the total numbers of bosons and
fermions. In the case of a bosonic thermal cloud, µb is fixed by the relation

Nb =
∫

dr[nc(r) + nb(r)]. (10)

For a fermionic cloud the chemical potential is determined from the total number of
fermions,

Nf =
∫

dr nf(r). (11)

These equations complete the self-consistent closure of the model in the initial equilibrium
state.

III. THE NUMERICAL METHOD

The set of Eqs. (2) and (3) for the condensate wavefunction and noncondensate Wigner
function, respectively, bears a strong resemblance with self-consistent Vlasov–Poisson sys-
tems. The numerical study of Vlasov–Poisson equations was pioneered almost three decades
ago in the context of plasma physics [29] and has ever since been the object of intense inves-
tigations using a variety of numerical techniques, including grid methods, particle methods,
as well as hybrids thereof (see [30]). However, a systematic study of the applicability of
these techniques to the physics of Bose–Einstein condensation is just beginning.

In this section we present details of the numerical procedure we have used to solve the
system of Vlasov–Landau and Gross–Pitaevskii equations. Since most experimental setups
are invariant under rotation in the azimuthal plane, we use cylindrical coordinates {r, z}.
The wavefunction 	 is discretized on a two-dimensional grid of Nr × Nz points, which are
uniformly distributed in a box of size rmax × 2zmax: that is, 	 jk ≡ 	(r j , zk) with{

r j = ( j − 1)�r ( j = 1, . . . , Nr )

zk = −zmax + (k − 1)�z (k = 1, . . . , Nz),
(12)

where �r and �z are the steps in the two space variables. The particle distributions are
discretized by means of a set of P computational particles,

f (p, r, t) → fP(p, r, t) ≡
P∑

i=1

δ(r − ri (t))δ(p − pi (t)), (13)

where the 6P phase-space coordinates ri (t) and pi (t) represent the actual numerical un-
knowns entering the VLE. They obey Newton’s equations,

{ dri
dt = pi/m

dpi

dt = Fi ,
(14)

where Fi collects all forces acting on the ith computational particle. As a result, at each
time step we have to solve for NG = Nr Nz grid unknowns coupled to 6P discrete particle
coordinates. To keep the systematic signal reasonably above the noise level, each grid cell
contains of the order of 10–100 computational particles. As a result, P ∼ 10NG − 100NG.
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A. Propagation of the Gross–Pitaevskii Equation

The GPE is advanced in time by an explicit finite-difference method based on a nonstag-
gered variant of the Visscher method [31]. Full details are given in the original papers [10,
12] and here we shall just review the main ingredients of the algorithm. The basic idea is to
advance the real and imaginary parts of the wavefunction, say A and B, in alternating steps,

{
An+1

jk − An−1
jk = −2[K jk(B) + V n

jk(B)]�t

Bn+1
jk − Bn−1

jk = 2[K jk(A) + V n
jk(A)]�t,

(15)

where n = 1, . . . , NT labels the discrete time sequence tn = n�t . The scheme is initiated
as follows. The initial conditions specify the values of A and B at n = 0 and subsequently
a first-order Euler step provides their values at n = 1. With these values available, all later
steps n = 2, 3, . . . , NT are taken by using Eqs. (15).

In Eqs. (15) K jk is the kinetic energy operator,

K jk(	) = − h̄2

2m

[
	 j−1,k

�r2
+ 	 j+1,k

�r2
+ 	 j,k−1

�z2
+ 	 j,k+1

�z2
− 2

(
1

�r2
+ 1

�z2

)
	 j,k

]
(16)

and

Vjk(	) = V eff(r j , zk; n jk)	 jk (17)

is the potential energy operator, which includes both external and self-consistent interac-
tion terms. The self-consistent potential requires the specification of the particle density
n jk at each node of the spatial grid. This is obtained by convoluting the discrete particle
distribution,

n jk(t) =
∑
i∈C jk

W jk,i fi (t), (18)

where C jk is the grid cell centered at r j+1/2 = (r j + r j+1)/2 and zk+1/2 = (zk + zk+1)/2,
while fi = 1 if the particle belongs to C jk and fi = 0 otherwise. The factor W jk,i weights
the contribution of particle i to the density at the grid point (r j , zk).

We adopt a bilinear cloud-in-cell (CIC) interpolator (see Fig. 1, top panel), which yields
the scattering (particle-to-grid) rule [32]

W jk,i = ei (r j )ei (zk) ( j = ji , ji + 1, k = ki , ki + 1). (19)

Here ( ji , ki ) identifies the lower left corner of the grid cell to which the i th particle belongs.
In Eq. (19) ei (r) and ei (z) are one-dimensional piecewise linear splines centered on the
discrete particle position (ri , zi ),

ei (r) =
{

1 + (r−ri )

�r (ri − �r < r < ri )

1 − (r−ri )

�r (ri < r < ri + �r),
(20)

and similarly for ei (z).
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FIG. 1. (Top) Bilinear CIC interpolation: contribution of particle i to the density at grid point (r j , zk ). (Bottom)
Bilinear CIC interpolation: contribution of the forces at grid point (r j , zk ) to the force on particle i .

B. Propagating the Vlasov–Landau Equation

The VLE is advanced in time by a standard particle-in-cell (PIC) method [32]. In a
modified Verlet time-marching scheme, we obtain the following set of discrete algebraic
equations:




ri (t + �t) = ri (t) + vri (t)�t + ari (t)�t2/2

(riθi )(t + �t) = (riθi )(t) + vθ i (t)�t + aθ i (t)�t2/2

zi (t + �t) = zi (t) + vzi (t)�t + azi (t)�t2/2

vri (t + �t) = vri (t) + ari (t)�t

vθ i (t + �t) = vθ i (t) + aθ i (t)�t

vzi (t + �t) = vzi (t) + azi (t)�t.

(21)

Here ar , aθ , az and vr , vθ , vz are the three components of the acceleration and velocity,
respectively, along the (r, θ, z) coordinates. The advantage of the modified Verlet time
marching is that it preserves fourth-order accuracy while synchronously keeping the coor-
dinate and momentum degrees of freedom on the same sequence of discrete times.

The algorithm is standard except for the specification of the self-consistent coupling,
namely, the force due to the density gradients. First, we form density gradients from auxiliary
values of the density field n j+1/2,k+1/2 at cell centers,

{
Gr jk = [

n j+1/2,k−1/2 − n j−1/2,k−1/2 + n j+1/2,k+1/2 − n j−1/2,k+1/2
]/

(2�r)

Gz jk = [
n j−1/2,k+1/2 − n j−1/2,k−1/2 + n j+1/2,k+1/2 − n j−1/2,k−1/2

]/
(2�z).

(22)

The azimuthal acceleration is zero in cylindrical symmetry. Next, the grid forces are
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evaluated on the discrete particle locations, this being the inverse of the scattering op-
eration discussed in the previous section (see Fig. 1, bottom panel). The grid-to-particle
convolution is

Fi =
1∑

s=0

Wi,( ji +s,ki +s)F ji +s,ki +s . (23)

To avoid spurious self-forces we again use CIC interpolation, which amounts to using the
same weighting function as for the GPE in the grid-to-particle scattering rule,

Wi, jk = e j (ri )ek(zi ). (24)

With the force/acceleration field transferred to the particle locations, everything is set to
march the VLE in time.

C. Boundary Conditions

The conditions imposed on the wavefunction are (i) periodicity along the z coordinate,
(ii) symmetry (zero radial gradient) at r = 0, and (iii) a vanishing value at the outer radial
boundary r = R. For the discrete particle distribution we have again periodicity along z and
specular reflection at the outer radial boundary. Specular reflection means that a particle
flying from, say, rα < R to rβ > R is replaced by a particle at r = 2R − rβ with inverted
radial speed. Since the particle trajectories are tracked in a three-dimensional cylindrical
coordinate frame, the r = 0 axis requires no special treatment.

1. Time-step considerations. The GPE and the VLE are advanced on the same discrete
time sequence. This maximizes simplicity but implies that the time step is controlled by
the fastest process at work, which usually is the self-consistent potential acting upon the
condensate wavefunction. Better efficiency can be achieved by subcycling the time-stepper,
namely, by advancing the slowest equation (say the VLE) only every �tVL/�tGP steps, with
�tVL and �tGP being the largest time steps allowed by the stability conditions on the two
equations. The maximum time step for the GPE solver is estimated from

�tGP

(
C1

h̄

mδ2
+ C2

VM

h̄

)
< 1, (25)

where δ is a typical mesh size, VM is the maximum value of the potential, and C1 and C2

are two O(1) coefficients which depend on geometry and dimensionality. We note here the
concurrent effects of quantum diffusion (kinetic energy) and scattering/absorption (potential
energy).

The maximum time step for the VLE solver is estimated from

�tVL
vmax

δ
< 1, (26)

where vmax is the maximum speed in the velocity grid, which is of the order of the Fermi
velocity for fermions and of the thermal velocity for bosons. Under ordinary conditions
the kinetic energy contributions dominate over those from the potential energy, so that
the condition for the GPE to be the time-limiting section of the code takes the form of a
numerical “uncertainty principle,” mvmaxδ > h̄. For the cases discussed in this work, this
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inequality is generally fulfilled within a factor of 10, so that subcycling is not compulsory.
The inclusion of collisional interactions would make it mandatory.

2. Radial singularity. A source of potential trouble is the singularity at r = 0, which
is known to affect all calculations in polar coordinates. To date, singular factors 1/r are
regularized by a simple numerical cutoff 1/r → 1/(r + rc) with rc ∼ 0.001�r , with a check
that the physical results are virtually insensitive to the specific value of rc.

Another undesirable side effect of the cylindrical geometry is the relative depletion of
near-axis cells, which tend to host fewer particles just because of the r�r volumetric effect.
On the other hand, this volumetric depletion is often more than compensated for by the
physical behavior of the radial density, which is generally largest at r = 0. In any case, the
volumetric effect can be readily disposed of by moving to a nonuniform grid along the
radial coordinate.

3. Statistical noise. Considerations of statistical accuracy require of the order of a few
tens of particles per grid point (or equivalently per grid cell) to keep the noise-to-signal
ratio below an acceptable threshold. A practical consequence of this statistical accuracy
requirement is that the VLE part of the computational scheme should be designed in such
a way as to evolve these tens of computational particles in approximately the same amount
of CPU time that it takes the GPE solver to advance a single grid point.

Another interesting consequence is that—at variance with ordinary situations in (clas-
sical) rarefied-gas dynamics—the number of computational particles in the simulation of
Bose–Einstein condensates far exceeds the number of physical atoms, typically by a factor
103 in our case. As a result, each single computer simulation performs de facto a built-in
ensemble average over a set of about a thousand realizations.

D. Procedure: Preparing the Initial State

The initial condition for the populations of bosons or fermions in the cold-atom cloud is
prepared as follows. Particles are sampled from the probability distribution functions (pdf)

fb,f = e−η

1 ∓ e−η
, (27)

where η ≡ β(p2/2m + Veff − µb,f) and β = 1/kBT is the inverse temperature.
The initializiation procedure starts by assigning to each spatial cell centered about position

r a corresponding amount of computational particles,

�N (r) = nb,f(r)�V (r), (28)

where �V (r) = 2πr�r�z is the cell volume. These particles must be sampled in momen-
tum space according to the pdf (27). Owing to the nonseparability of the pdf, straightforward
sampling based on exact inversion is ruled out and one must resort to more general—but
less efficient—accept/reject methods.

The particle momenta are sampled from the distribution function using the standard
Box–Mueller algorithm in three dimensions for cylindrical coordinates [33],


p⊥ = pmaxr1

ξ = 2πr2

pz = pmax(2r3 − 1),

(29)
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where r1, r2, and r3 are sampled from a uniform distribution in the range [0, 1]. The maximum
momentum pmax is taken to be of order 2pF for cold fermions and of order 3mbvth for bosons,
with pF = h̄kf being the Fermi momentum and vth being the average thermal velocity. The
particle momentum coordinates in the azimuthal plane are evaluated as

{
pr = p⊥ sin ξ

pθ = p⊥ cos ξ.
(30)

Finally, to avoid poor acceptance rates, the standard accept/reject test is performed by
comparing the pdf with the maximum value fmax (r) that it can take in the cell at position
r, that is,

If f (pr , pθ , pz; r) > r4 fmax(r) : accept

Else : reject, (31)

where r4 is a random number uniformly distributed in [0, 1].

IV. PHYSICAL APPLICATIONS

A. Expansion of Cold Fermions

As a first test of the dynamical algorithm, we consider the expansion of a cloud of cold
fermions after release of the harmonic trap. The neglect of the collisional integrals is a
reliable approximation in this context, since, as already remarked, the s-wave scattering
between spin-polarized fermions is suppressed by the Pauli principle.

This problem has been analytically solved in Ref. [34] under the assumption of ballistic
expansion. The time evolution of the mean square radii is found to be

〈r2
⊥(t)〉 = 1

3Nf
Erel

4

mfω
2
f

(
1 + ω2

f t2
)

(32)

and

〈z2(t)〉 = 1

3Nf
Erel

2

mf(εfωf)2
(1 + (εfωf)

2t2). (33)

In Eqs. (32) and (33) Erel is the so-called release energy, namely, the energy of the system
with Nf fermions after switching off the trap, which amounts to one half of the total average
energy. For a noninteracting fermion gas at temperature T > 0.2TF this is best approxi-
mated by the classical relation Erel � 3NfkBT/2, while at lower temperature it is given
by Erel � (3/4)Nf EF[1 + (2π/3)(T/TF)

2], with EF = kBTF = (6Nf)
1/3h̄ωf being the Fermi

energy.
We prepare the initial thermodynamic state (9) for Nf = 1000 40K atoms in an isotropic

trap with ωf = 2π × 15.92 rad/s at T = 0.55TF ≈ 7.6 nK. The chemical potential of the gas
is µf = 0.063EF = 1.14h̄ωf. We use an Nr × Nz Mesh of 201 × 401 points with 1.6 × 106

representative particles in a box measuring 40 and 80 in units of aho = √
h̄/(mfωf) along

the radial and axial directions, respectively. The time step in the dynamical simulation is
ω f �t = 10−4.
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We then evaluate from the simulation runs the radial width

σr⊥(t) =
√∫

dx dy dz[(x(t) − 〈x(t)〉)2 + (y(t) − 〈y(t)〉)2]nf (r; t)

= 1

P

P∑
i=1

[(xi (t) − 〈x(t)〉)2 + (yi (t) − 〈y(t)〉)2] (34)

and the axial width

σz(t) =
√∫

dx dy dz(z(t) − 〈z(t)〉)2nf (r; t)

= 1

P

P∑
i=1

(zi (t) − 〈z(t)〉)2 (35)

of the cloud as functions of time, after averaging over the density distribution nf(r; t) by
means of sum over all particles positions. Here, the center-of-mass coordinates are defined as
〈x(t)〉 = ∑P

i=1 xi (t)/P and similarly for 〈y(t)〉 and 〈z(t)〉. Of course, during free expansion
the center-of-mass coordinates must remain unchanged: This property is used as a test of
the numerical method.

Figure 2 shows that the calculated σr⊥ (circles) and σz (squares) agree with the results
from the analytical expressions (32) and (33) (solid lines), where the classical expression
has been used for Erel. Snapshots of the density profiles at selected times are shown as
contour plots in Fig. 3. The definition of the profile degrades in time because the number
of particles per cell drops during the expansion.

After this test of the reliability of the simulation method, we proceed to use it in some
original applications.

FIG. 2. Expansion of a cold fermionic cloud after release from a harmonic trap: radial and axial widths of the
density distribution (in units of aho) as functions of time. Circles, σr⊥; squares, σz ; solid lines, analytical expressions
(32) and (33) from Ref. [34].
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FIG. 3. Expansion of a cold fermionic cloud after release from a harmonic trap: snapshots of the density
distribution, shown as contour plots. From top left to bottom right: t = 0, 5, 10, and 15 ms. The axial and radial
coordinates are in units of aho.

B. Expansion of a Mixture of a Condensate and a Cold-Fermion Cloud

As a first novel application we look at the case in which a core of Bose-condensed atoms
is present inside the dilute Fermi gas. We prepare a state with Nf = 1000 40K atoms and
Nc = 105 39K atoms in identical harmonic traps and at the same temperature as for the Fermi
gas studied in Section IV.A. The scattering length which describes the interactions between
the atoms in the condensate is abb = 80aBohr, while the interspecies scattering length is
abf = 40aBohr.

The inclusion of the GPE algorithm at fixed mesh size normally requires shorter time
steps to mantain stability. We make the choice of a thinner 501 × 1001 mesh than that in
Section IV.A to keep the time step at ω�t = 10−4, with all other simulation parameters
remaining the same.

The initial state is characterized by µb = 0.52EF = 9.51h̄ωf and µf = 0.10EF = 1.83h̄ωf.
We display in Fig. 4 the average widths σr⊥ (circles) and σz (squares) for both the fermionic
cloud (open symbols) and the condensate (filled symbols). The solid lines are the analytical
solution for the ideal Fermi cloud as in Fig. 2. It is seen that with the scattering lengths of the
39K–40K mixture the mean-field force of the inner condensate core on the outer fermionic
cloud is not strong enough to sizeably affect the expansion of the latter.

Snapshots of the condensate density profiles and of the fermionic cloud at times t = 0,
8.5, 17, and 25.5 ms are displayed as contour plots in Figs. 5 and 6. Comparison with
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FIG. 4. Expansion of a cold fermionic cloud and an inner condensate core after release from a harmonic trap:
radial and axial widths of the density distributions (in units of aho) as functions of time. Circles, σr⊥; squares, σz ;
open symbols, fermionic cloud; filled symbols, condensate; solid lines, analytical expressions (32) and (33) from
Ref. [34].

FIG. 5. Expansion of a cold fermionic cloud with an inner condensate core after release from a harmonic
trap: snapshots of the condensate density distribution, shown as contour plots. From top left to bottom right: t = 0,
8.5, 17, and 25.5 ms. The axial and radial coordinates are in units of aho.
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FIG. 6. Expansion of a cold fermionic cloud with an inner condensate core after release from a harmonic
trap: snapshots of the fermionic density distribution, shown as contour plots. From top left to bottom right: t = 0,
8.5, 17, and 25.5 ms. The axial and radial coordinates are in units of aho.

those in Fig. 3 shows that the reduced number of computational particles per cell tends to
increase the statistical noise. This degradation worsens as the simulational time elapses, as
is evidenced by the last snapshot in Fig. 6.

C. Oscillations of Bose Gases inside an Optical Lattice

Here and in the following section we apply our numerical method to study the dynamics
of a Bose–Einstein condensate and a thermal cloud of 87Rb atoms at finite temperature
inside a one-dimensional optical lattice. The initial state is prepared by adding to the har-
monic trap, described by Vtrap(r) = (1/2)mω2(r2

⊥ + ε2z2), a periodic potential given by
Vlatt(z) = αER sin2(kLz), where ER = h̄2k2

L/(2m) is the recoil energy and kL = 2π/λ is the
wavenumber of the laser beam which creates an optical lattice with period π/kL in the axial
direction.

Such a system, which has been realized at LENS [35] and examined numerically at
T = 0 by two of us [35, 36], shows a rich variety of dynamical behaviors. Thus, the study
of the sloshing-mode oscillations of an almost pure condensate with N = 3 × 105 atoms
in a lattice with α = 1.6 shows that superfluidity is superseded by dissipation as the initial
displacement of the condensate away from the harmonic-trap center is increased. This
behavior is quantitatively understood as a gradual destruction of superfluidity via emission
of sound waves in the periodically modulated inhomogeneous medium [35]. Below the
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FIG. 7. Oscillations of a condensate in a harmonic plus shallow optical-lattice potential: snapshots of the
density distribution, shown as contour plots. From top left to bottom right: t = 23.3, 46.6, 69.9, and 93.2 ms. The
axial and radial coordinates are in units of aho.

dissipative threshold, on the other hand, the oscillatory motion of the condensate through
the optical lattice can be mapped into the dynamics of superconducting carriers through a
weak-link Josephson junction [36]. This implies the possibility of observable resonances
and of multimode behavior.

Here we extend our numerical studies to contrast the oscillations of a condensate with
the motions of a thermal cloud. We prepare initial states for the two cases α = 1 and α = 5,
both at T = 0 for the BEC [37] and for the thermal cloud at temperature T above the critical
temperature Tc. We give an initial displacement �z = 42.6 µm to the trap center and follow
the subsequent dynamics with a time step ω�t of order 10−5.

The snapshots of the atomic density show that for α = 1 (see Figs. 7 and 8) the condensate
behaves as a superfluid executing harmonic oscillations at a frequency equal to the trap
frequency, while the thermal cloud at T > Tc diffuses away in a quarter of a period. For
α = 5 (see Figs. 9 and 10) the condensate instead breaks into fragments as it attempts to
perform the first oscillation, and after a period its center of mass becomes localized at the
bottom of the harmonic well. In the same setup the thermal cloud becomes localized at the
center of the trap in 1/10 of a period and spreads out.

Figure 11 gives a clear picture of these behaviors by reporting the axial center position
and width of the condensate and of the thermal cloud as functions of time in the two cases.

D. Expansion of a Bose-Condensed Gas in an Optical Lattice

In our final study we look at the expansion of a Bose–Einstein condensate and its
thermal cloud, which initially reside in a harmonic well and a superposed optical-lattice
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FIG. 8. Oscillations of a bosonic thermal cloud in a harmonic plus shallow optical-lattice potential: snapshots
of the density distributions, shown as contour plots. From top left to bottom right: t = 6, 12, 18, and 24 ms. The
axial and radial coordinates are in units of aho.

potential. The external potentials are characterized by parameters typical of an experi-
ment at LENS [38], namely, ω = 2π · 90 rad/s, ε = 8.9/90, 2π/kL = 795 nm, and α = 5.
The condensate contains 6935 87Rb atoms and the thermal cloud is composed of 3065
atoms. The temperature of the gas is T = 86 nK = 0.24ER/kB and its chemical potential is
µ = 5.86 h̄ω = 0.14ER. We use a mesh of 111 × 2801 points with 308,000 representative
particles.

We evolve the gas with a time step ω�t = 7 × 10−5 after switching off both the harmonic
trap and the periodic potential. Snapshots of the atomic densities of the condensate and of
its thermal cloud, taken at the moment in which the potentials are switched off and after
3.5, 7, and 10.5 ms of free expansion, are shown in Figs. 12 and 13. The condensate is seen
in Fig. 12 to develop side bands which separate out of the central cloud, while the thermal
cloud in Fig. 13 simply spreads out. These features of our numerical results reproduce those
observed in the experiments [38].

The appearence of side bands in the condensate during expansion is due to Bragg scatter-
ing against the periodic potential. In fact, in a long-time simulation run of a one-dimensional
model of the expansion we have found that the condensate side bands move at velocity
v � 2h̄kL/m, corresponding to the momentum associated with the first reciprocal vector of
the optical lattice.
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FIG. 9. Oscillations of a condensate in a harmonic plus deep optical-lattice potential: snapshots of the density
distributions, shown as contour plots. From top left to bottom right: t = 23.3, 46.6, 69.9, and 93.2 ms. The axial
and radial coordinates are in units of aho.

V. COMPUTATIONAL REMARKS

We have assessed the computational performance of the numerical method by repeating
the test of Section IV.A after changing either the number of computational particles or the
mesh size. We list in Table I the computational times elapsed while running the HPF-PGI-
compiled code on a fully dedicated 1-GHz Pentium III SCSI.

These data provide the following values for the specific CPU time costs of the GPE and
VLE of the code per time step: {

tGP ∼ 1.5 µs/grid point
tVL ∼ 0.6 µs/particle.

(36)

TABLE I

Expansion of a Cloud of Fermionic 40K Atoms after

Release from the Harmonic Trap

P Nr × Nz CPU time (hh:mm:ss)

1.6 × 106 201 × 401 8:35:27
8 × 105 201 × 401 5:33:55

1.6 × 106 401 × 801 10:22:24

Note. CPU time (third column) elapsed on a 1-GHz Pentium III
SCSI for simulating 20,000 time steps, corresponding to 20 ms,
for various numbers of computational particles (first column) and
mesh sizes (second column).
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FIG. 10. Oscillations of a bosonic thermal cloud in a harmonic plus deep optical-lattice potential: snapshots
of the density distributions, shown as contour plots. From top left to bottom right: t = 2.8, 5.6, 8.4, and 11.2 ms.
The axial and radial coordinates are in units of aho.

FIG. 11. Oscillations of a condensate and a bosonic thermal cloud in a harmonic trap plus optical-lattice
potential with axial center-of-mass coordinate and average axial width of the density distributions (in units of aho)
as functions of time. Continuous line, condensate with α = 1; dashed line, condensate with α = 5; crosses, thermal
cloud with α = 1; circles, thermal cloud with α = 5.



MIXED BOSE-CONDENSATE AND COLD-ATOM CLOUD DYNAMICS 387

FIG. 12. Expansion of a condensate interacting with its thermal cloud after release from harmonic plus deep
optical-lattice potential: snapshots of the density distribution, shown as contour plots. From top left to bottom
right: t = 0, 3.5, 7, and 11.5 ms. The axial and radial coordinates are in units of aho.

These figures invite a number of comments. First, they show that the VLE section can evolve
just a few computational particles while a single grid point of the GPE solver is advanced.
This is not surprising on account of the explicit nature of the GPE solver. Since statistical
accuracy requires of the order of 10 particles per cell, we conclude that the VLE solver
is a potential computational bottleneck. Let us nonetheless assume that the VLE and GPE
sections can evolve on a one-to-one CPU time basis. We can then focus on the grid part only
and estimate the feasibility of large-scale applications to finite-temperature condensates in
optical lattices. Covering a simulation span of 100 ms in steps of 0.1 µs requires 107 time
steps. At a cost of 1 µs per time step and grid point, a grid with, say, 106 points takes of the
order of 106 s—almost two weeks—of CPU time to complete. Ways to achieve substantial
speed-up are clearly needed. Among others, a promising strategy is parallel computing,
possibly combined with nonuniform meshes. The efficient implementation of such parallel
schemes is a nontrivial task which requires a careful analysis [39]. The standing challenge
is again associated with the Vlasov equation.

The parallelization of the GPE solver alone would proceed via a straightforward geo-
metrical decomposition of the computational grid, whereby each processor would own the
values of the condensate wavefunction at the grid points belonging to the given geometrical
subdomain. Such a static geometric decomposition faces potential efficiency problems in
the parallel Vlasov solver, simply because the set of particles owned by any given processor
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FIG. 13. Expansion of a bosonic thermal cloud interacting with a condensate after release from harmonic
plus deep optical-lattice potential: snapshots of the density distribution, shown as contour plots. From top left to
bottom right: t = 0, 3.5, 7, and 11.5 ms. The axial and radial coordinates are in units of aho.

is changing all the time due to particle motion. As a result, a substantial amount of interpro-
cessor communication is required to keep this information up to date. One may of course
partition over the set of particles, i.e., assign each processor with a static subset of particles
regardless of their position in space. A complementary problem is immediately apparent,
though: Particles interacting in the same mesh cell are now likely to belong to many differ-
ent processors, whence again entailing the need of performance-degrading interprocessor
communications. These simple considerations highlight the fact that the efficient imple-
mentation of parallel solvers for grid–particle methods requires a careful tradeoff, whose
actual outcome may well depend on the architectural details of the parallel computer at
hand. Fortunately, in the last decade much activity has been directed to this problem in the
field of parallel computing. The optimal adaptation of this current know-how to the context
of Bose–Einstein condensates is surely an important issue of future research in the field.

VI. CONCLUDING REMARKS

The increasing complexity and variety of phenomena observed in current studies of the
dynamical behavior of normal and superfluid quantum gases at finite temperature motivate
the development of suitable numerical tools to assist theoretical understanding.

To this aim, we have combined a particle-in-cell method with an explicit time-marching
algorithm to evaluate the time evolution in models of a Bose–Einstein condensate and a
cold-atom cloud.

We have tested the method against known analytical results in the simple physical sit-
uations offered by the expansion of a collisionless fermionic cloud without and with an
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inner Bose-condensed core. We have also applied it to simulate novel experimental obser-
vations on the dynamical behavior of a condensate with its thermal cloud in a harmonic plus
optical-lattice potential, where we have found substantial accord with current experiments.

We have also analyzed those computational aspects of the algorithm which are most
relevant to applications in large-scale problems. This analysis emphasizes the need for
nonuniform meshes and parallel computing. On the physics front, an extension of the
method to include the quantum collisional integrals is underway.
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excitations of a Bose–Einstein condensate, Phys. Rev. Lett. 84, 810 (2000).

3. M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, Output coupler
for Bose–Einstein condensed atoms, Phys. Rev. Lett. 78, 582 (1997); B. P. Anderson and M. Kasevich,
Macroscopic quantum interference from atomic tunnel array, Science 282, 1686 (1998); I. Bloch, T. W.
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